Performance of Generalized Poisson Regression Model and Negative Binomial Regression Model in case of Over-dispersion Count Data

نویسنده

  • Farhana Sadia
چکیده

This paper represents the comparison between Negative Binomial Regression model and Generalized Poisson Regression model for over-dispersion count data. For this comparison, we used BDHS 2007 data in where the response variable is the total children ever born which is a count data. When the response variable is count, then Poisson Regression Model as a Generalized Linear Model is widely and popularly used to analyze such type of response variable and Poisson Regression model gives better result than the usual regression model for analyzing count data. In this paper, the descriptive statistics of the total children ever born data exhibit the presence of over-dispersion in the data set. Since the total children ever born data used in this study exhibit over-dispersion, we can use Negative Binomial Regression Model and Generalized Poisson Regression Model. These two models have statistical advantages over standard Poisson regression model and are suitable for analysis of count data that exhibit either over-dispersion or under-dispersion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...

متن کامل

کاربرد مدل رگرسیون پواسنی تعمیم یافته در تحلیل داده‌های باروری زنان روستایی استان فارس

Background & objectives: statistical modeling explicates the observed changes in data by means of mathematics equations. In cases that dependent variable is count, Poisson model is applied. If Poisson model is not applicable in a specific situation, it is better to apply the generalized Poisson model. So, our emphasis in this study is to notice the data structure, introducing the generalized Po...

متن کامل

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

متن کامل

Comparison between Efficiency of Poisson Regression Model and Negative Binomial Regression in the Analysis of Factors Affecting Mortality from Cardiovascular Diseases in Yazd Province in 2017

      Introduction: Despite the advances in cardiovascular diseases, death caused by these diseases is still considered as the leading cause of mortality. In this study, some of the effective factors on the deaths caused by cardiovascular diseases were investigated Methods: This cross-sectional analytical study investigated the efficacy of Poisson regression models and negative binomial regres...

متن کامل

Zero inflated Poisson and negative binomial regression models: application in education

Background: The number of failed courses and semesters in students are indicatorsof their performance. These amounts have zero inflated (ZI) distributions. Using ZI Poisson and negative binomial distributions we can model these count data to find the associated factors and estimate the parameters. This study aims at to investigate the important factors related to the educational performance of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013